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SQUARE PRODUCT OF THREE INTEGERS 
IN SHORT INTERVALS 

L. HAJDU AND A. PINTER 

ABSTRACT. In this paper we list all the integer triplets taken from an interval 
of length < 12, whose products are perfect squares. 

1. INTRODUCTION 

Let f and k be positive integers with f < k. The sets of distinct integers 
n, . .. , nf C [n + 1. ... , n + k] with the property that there is a nontrivial way to 
multiply them to obtain a perfect power was investigated by Erdos and Turk [ET]. 
This question is related to the Erdos-Selfridge theorem (see [ES]), which states that 
the product of two or more consecutive integers is never a perfect power that is, 
if f = k > 2, then the equation 

f 
(1) tI ~~~~n- = xm (x E- 1, m > 2) 

i=l1 

has no solutions. Moreover, Erdos and Turk conjectured (cf. [ET]) that (1) has no 
solutions with (k, f, m) = (4, 3, 2). This conjecture was verified by Tzanakis [T]. 

In this paper we list all the integer triplets (f = 3) taken from a short interval 
(k < 12) whose products are perfect squares. 

2. RESULT 

Now we formulate our result. 

Theorem. Let (a, b, c) C 23 with a < b < c such that c-a = k-1 < 12. If abc #4 0 
is a perfect square, then the triplet (a, b, c) is one of the following: 

k =5: (-2, -1,2), (2, 3,6); 
k 6: (-4, -1,1), (3,6,8), (5,8,10), (240,243,245); 
k 7: (-4, -2,2), (-3,-1, 3), (2,4,8), (6,8,12), (48,50,54); 
k 8: (-4, -3,3), (1,2,8), (2,8,9), (7,8,14), (21, 27,28); 
k = 9 : (-6,-3,2), (-4,-1,4), (1,4,9), (2,5,10), (12,15,20), (24,27,32), 

(242,245,250); 
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k = 10: (-8,-2,1), (-6,-2,3), (-3,-2,6), (3,4,12), (3,9,12), (6,10,15), 
(18, 24, 27); 

k = 11: (-9, -4, 1), (-9, -1,1), (-8, -4,2), (-8, -1,2), (-5, -4)5), (-5,-I),5), 
(-2, -I, 8), (2,6,12), (5, 12, 15), (8,9,18), (8,16,18), (10,18,20), (14,21,24), 
(20, 24, 30), (40, 45, 50), (2880, 2888, 2890), (10082,10086,10092); 

k = 12: (-9, -8, 2), (-9, -2, 2), (-8, -6,3), (1, 3,12), (7,14,18), (11, 18,22), 
(22, 24, 33), (44, 45, 55), (88, 98, 99), (693,700,704). 

As a consequence of the theorem we obtain that the interval [44,45,.. ., 55] is 
the smallest one which contains two disjoint triplets of positive integers with the 
relevant property: {44,45,55} and {48, 50, 54}. 

3. PROOF 

To prove our theorem, we will reduce equation (1) to several elliptic equa- 
tions. Recently, Gebel, Petho and Zimmer [GPZ], and independently Stroeker and 
Tzanakis [ST], have developed an algorithm for solving elliptic equations. Their 
method is based on the approach of Zagier [Z], and on the recent estimates of linear 
forms in elliptic logarithms due to David [D]. The algorithm outlined in [GPZ] has 
been implemented by Gebel in the program package SIMATH (cf. [SIM]), and we 
use this program package to solve our elliptic equations. 

Proof of the Theorem. Let (a, b, c) C 23 be a triplet with the desired property, and 
put x = a, u = b-a and v = c-a. To prove the theorem we have to solve the 
system of elliptic equations 

X(X - U)(X _ V) = y2 

with 0 < u < v < 12 in integers x, y. Using the results of Erdos and Selfridge [ES], 
and Tzanakis [T], we may suppose that v > 4, and we obtain 52 equations. By a 
simple substitution we transform these elliptic equations into Weierstrass normal 
form, and we can solve them by SIMATH. We obtained just the solutions listed in 
our theorem. D 
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